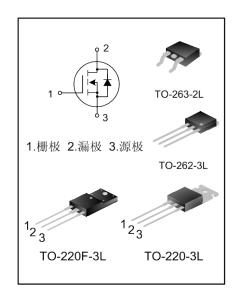
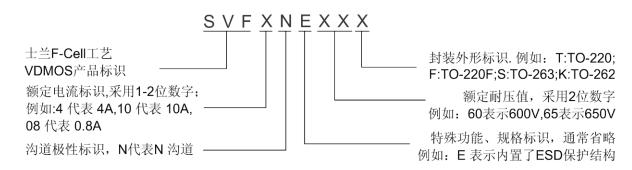


12A、600V N沟道增强型场效应管

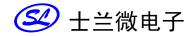

描述

SVF12N60T/F/S/K N沟道增强型高压功率 MOS 场效应晶体管采用士兰微电子的 F-CellTM 平面高压 VDMOS 工艺技术制造。 先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。


该产品可广泛应用于 AC-DC 开关电源, DC-DC 电源转换器, 高压 H 桥 PWM 马达驱动。

特点

- * 12A, 600V, $R_{DS(on)}$ (400) =0.58 Ω @ V_{GS} =10V
- * 低栅极电荷量
- * 低反向传输电容
- * 开关速度快
- * 提升了 dv/dt 能力

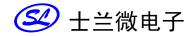


命名规则

产品规格分类

产品名称	封装形式	打印名称	材料	包装
SVF12N60T	TO-220-3L	SVF12N60T	无铅	料管
SVF12N60F	TO-220F-3L	SVF12N60F	无卤	料管
SVF12N60S	TO-263-2L	SVF12N60S	无铅	料管
SVF12N60STR	TO-263-2L	SVF12N60S	无铅	编带
SVF12N60K	TO-262-3L	SVF12N60K	无卤	料管

极限参数(除非特殊说明, T_C=25°C)

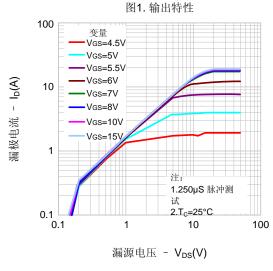

参数名称		符号	参数范围				
			SVF12N	SVF12N	SVF12N	SVF12N	单位
			60T	60F	60S	60K	
漏源电压		V_{DS}	600				V
栅源电压	栅源电压			V			
足切开外	T _C =25°C			А			
漏极电流	T _C =100°C	I _D					
漏极脉冲电流	漏极脉冲电流		48				Α
耗散功率(T _C =25°C)	耗散功率(Tc=25℃)		225	51	180	213	W
- 大于 25℃ 每摄氏度减少		P_D	1.8	0.41	1.44	1.7	W/°C
单脉冲雪崩能量(注1)		E _{AS}	795				mJ
工作结温范围		T_J	-55∼+150				°C
贮存温度范围		T_{stg}	-55∼+150				°C

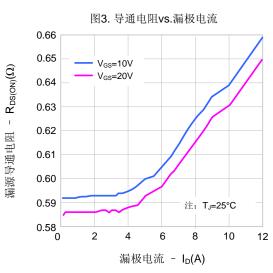
热阻特性

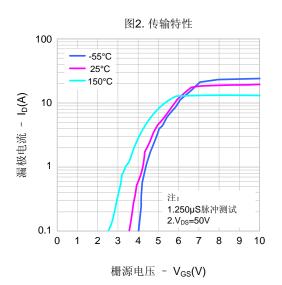
参 数 名 称	符 号	SVF12N	SVF12N	SVF12N	SVF12N	单位
		60T	60F	60 S	60K	
芯片对管壳热阻	$R_{\theta JC}$	0.56	2.44	0.69	0.59	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	120	62.5	62.5	°C/W

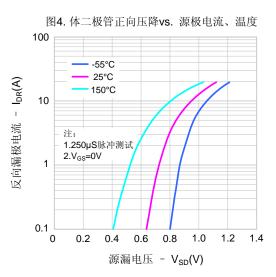
电性参数(除非特殊说明, T_C=25°C)

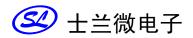
参数名称	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	V _{GS} =0V, I _D =250μA	600			V
漏源漏电流	I _{DSS}	V _{DS} =600V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	$V_{GS}=10V, I_{D}=6.0A$		0.58	0.75	Ω
输入电容	C_{iss}	.,		1469.9		
输出电容	C_{oss}	$V_{DS}=25V$, $V_{GS}=0V$,		161.2		pF
反向传输电容	C_{rss}	f=1.0MHZ		5.0	-	
开启延迟时间	t _{d(on)}	V _{DD} =300V, I _D =12A,	-	37.0	1	
开启上升时间	t _r	R _G =25Ω	1	71.67	1	
关断延迟时间	$t_{d(off)}$		1	80.0	1	ns
关断下降时间	t _f	(注 2,3)	-	43.67	1	
栅极电荷量	Q_g	V _{DS} =480V, I _D =12A,		24.35	-	
栅极-源极电荷量	Q_gs	V _{GS} =10V	-	7.79	-	nC
栅极-漏极电荷量	Q_gd	(注 2,3)		7.34		

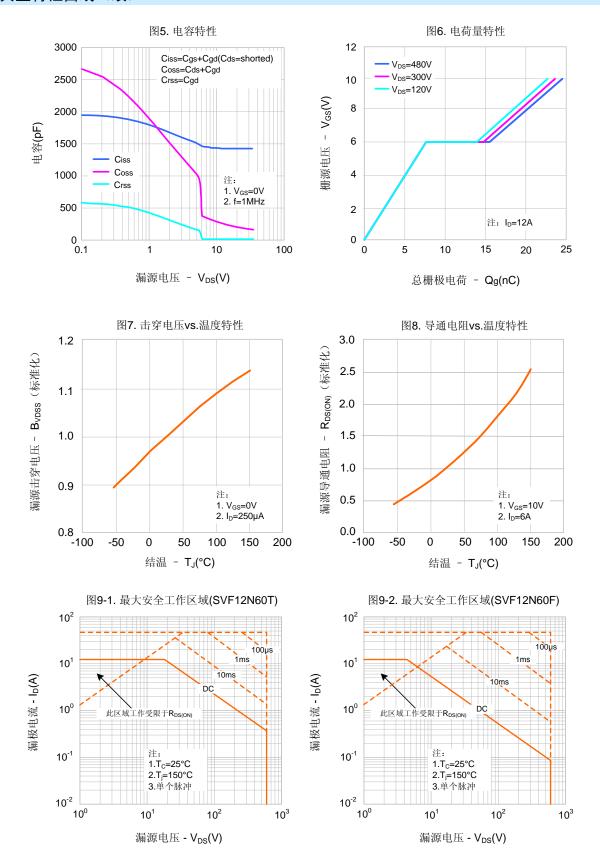

源-漏二极管特性参数

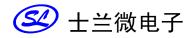

参数名称	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的		1	12	_
源极脉冲电流	I _{SM}	反偏 P-N 结			48	Α
源-漏二极管压降	V_{SD}	I _S =12A, V _{GS} =0V			1.3	V
反向恢复时间	T _{rr}	I _S =12A, V _{GS} =0V,		574.44		ns
反向恢复电荷	Q _{rr}	dI _F /dt=100A/µS (注 2)		5.42		μC

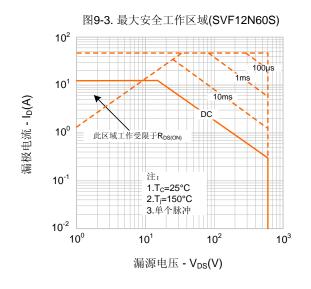

注:

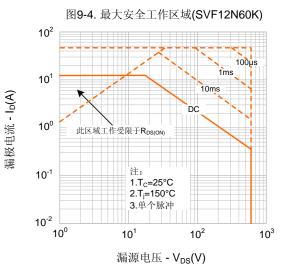

- 1. L=30mH, I_{AS}=6.66A, V_{DD}=140V, R_G=25Ω, 开始温度 T_J=25°C;
- 2. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

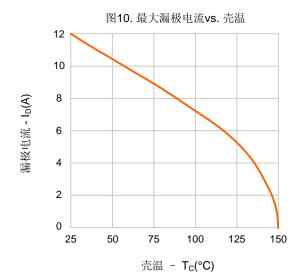

典型特性曲线

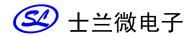




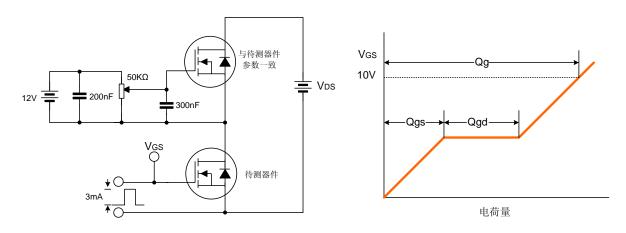


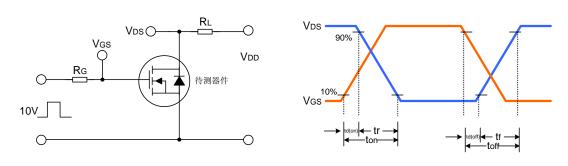

典型特性曲线 (续)



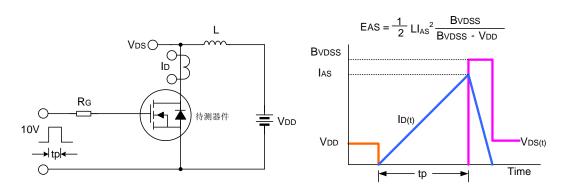


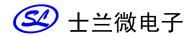
典型特性曲线 (续)



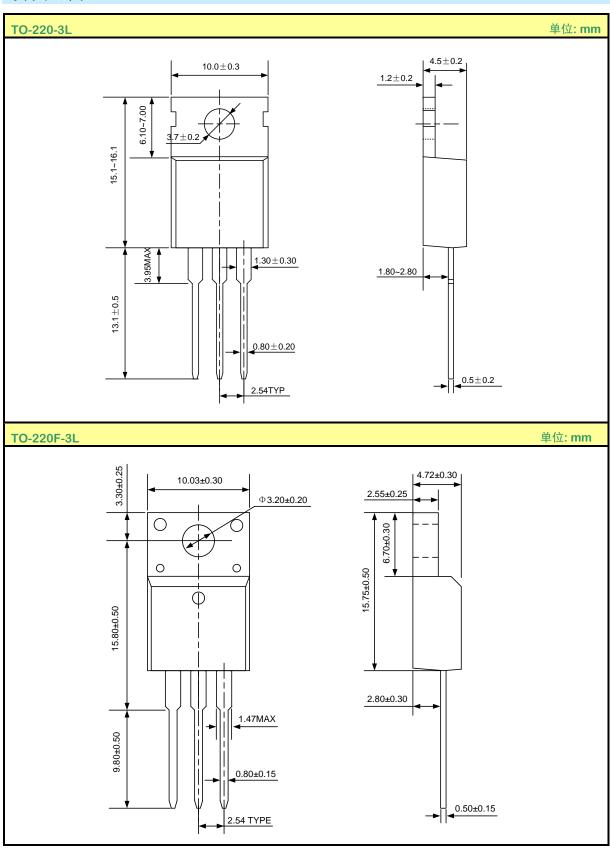


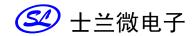
典型测试电路

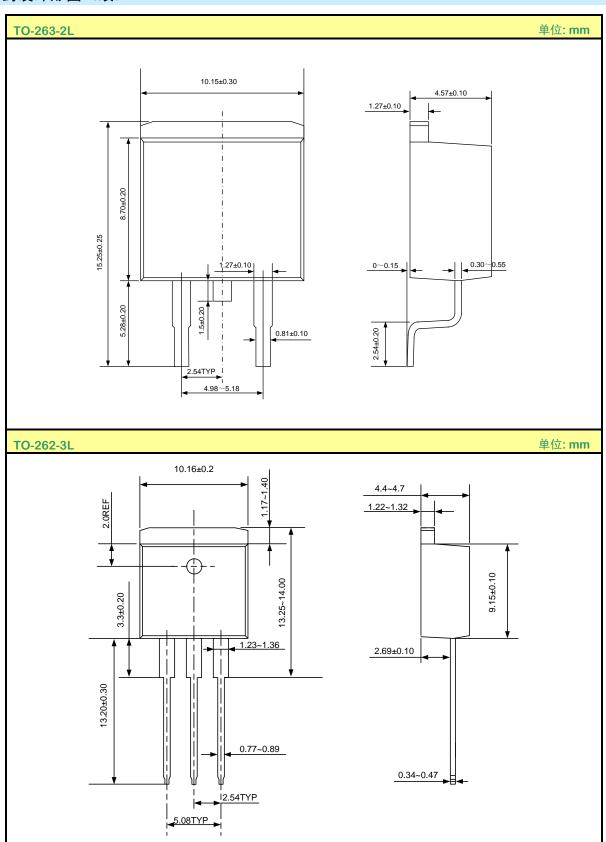

栅极电荷量测试电路及波形图

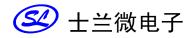


开关时间测试电路及波形图




EAS测试电路及波形图




封装外形图

封装外形图 (续)

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

附:

修改记录:

日期	版本号	描述	页码
2011.01.19	1.0	原版	
2011.08.30	1.1	修改"封装外形图"	
2012.04.11	1.2	增加SVF12N60F无卤信息	
2012.05.31	1.3	修改Trr和Qrr的值;修改"电容值";修改图5	
2012.06.15	1.4	修改R _{DS(on)} 典型值	
2012.08.23	1.5	增加TO-262-3L封装	
2013.08.21	1.6	修改"封装外形图"	
2013.12.12	1.7	修改MOS管符号的示意图	
2014.04.23	1.8	修改产品规格分类	