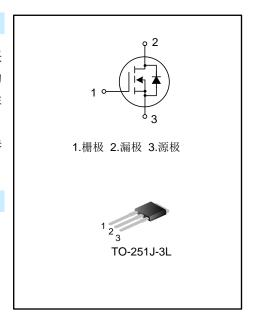


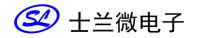
4A、700V N沟道增强型场效应管


描述

SVF4N70MJ N 沟道增强型高压功率 MOS 场效应晶体管采用士兰微电子 F-Cell™平面高压 VDMOS 工艺技术制造。先进的工艺及原胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于 AC-DC 开关电源, DC-DC 电源转换器, 高压 H 桥 PWM 马达驱动。

特点


- * 4A, 700V, $R_{DS(on)(\text{#}^3\text{#}\text{#})}$ =2.5 Ω @ V_{GS} =10V
- * 低栅极电荷量
- * 低反向传输电容
- * 开关速度快
- * 提升了 dv/dt 能力

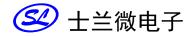
产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVF4N70MJ	TO-251J-3L	SVF4N70MJ	无卤	料管

杭州士兰微电子股份有限公司 http://www.silan.com.cn

极限参数(除非特殊说明, T_c=25°C)

参数		符号	参数范围	单位	
漏源电压		V _{DS}	700	V	
栅源电压		V _{GS}	±30	V	
漏极电流	T _C =25°C		4.0	А	
	T _C =100°C	I _D	2.53		
漏极脉冲电流		I _{DM}	16.0	Α	
耗散功率(T _C =25°C)		_	80	W	
- 大于 25°C 每摄氏度减少		P _D	0.64	W/°C	
单脉冲雪崩能量(注1)		E _{AS}	242	mJ	
工作结温范围		TJ	-55~+150	°C	
贮存温度范围		T _{stg}	-55∼+150	°C	

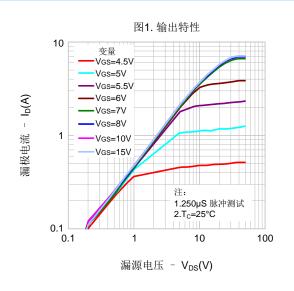

热阻特性

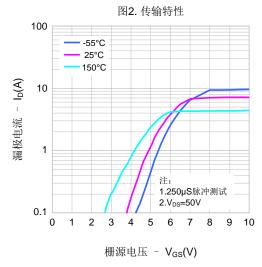
参数	符号	参数范围	单位
芯片对管壳热阻	$R_{ heta JC}$	1.56	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.0	°C/W

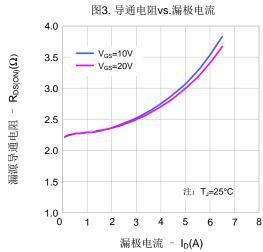
电气参数(除非特殊说明, T_c=25°C)

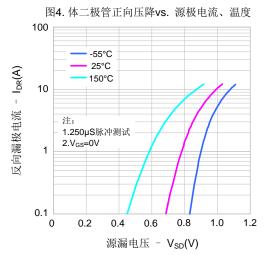
参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	$V_{GS}=0V$, $I_D=250\mu A$	700			V
漏源漏电流	I _{DSS}	V _{DS} =700V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =2.0A	I	2.5	3.0	Ω
输入电容	C _{iss}	.,	1	570.00		
输出电容	Coss	$V_{DS}=25V$, $V_{GS}=0V$,	I	58.30		pF
反向传输电容	C_{rss}	f=1.0MHz	1	2.91		
开启延迟时间	t _{d(on)}		-	15.87		
开启上升时间	t _r	$V_{DD}=350V, R_{G}=25\Omega, I_{D}=4.0A$	-	28.60		
关断延迟时间	t _{d(off)}	()	I	39.07		ns
关断下降时间	t _f	(注 2, 3)	I	29.60		
栅极电荷量	Q_g	V _{DS} =560V, I _D =4.0A,		13.33		
栅极-源极电荷量	Q_gs	V _{GS} =10V	1	3.58		nC
栅极-漏极电荷量	Q_gd	(注 2, 3)		5.76		

版本号: 1.7 共**7**页 第2页

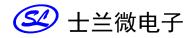

源-漏二极管特性参数

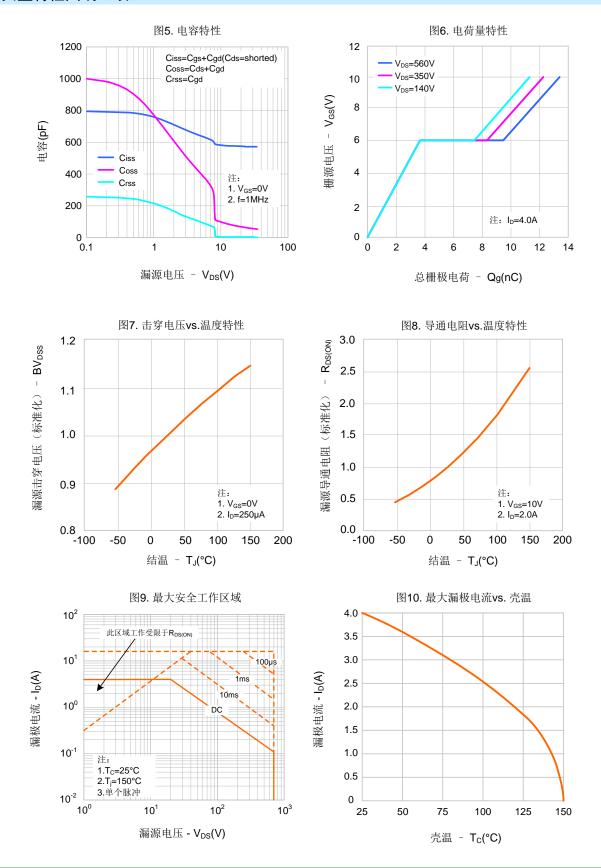

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	I _S	MOS 管中源极、漏极构成的反	-	1	4.0	
源极脉冲电流	I _{SM}	偏 P-N 结			16.0	Α
源-漏二极管压降	V_{SD}	I _S =4.0A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =4.0A, V _{GS} =0V,		437.0		ns
反向恢复电荷	Q _{rr}	dl _F /dt=100A/μs(注2)		2.2		μC

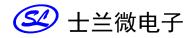

注:


- 1. L=30mH, I_{AS} =3.72A, V_{DD} =100V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

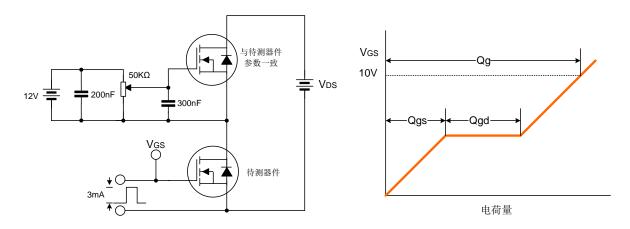
典型特性曲线



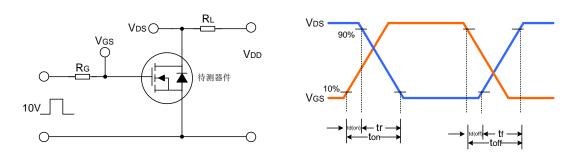



http://www.silan.com.cn

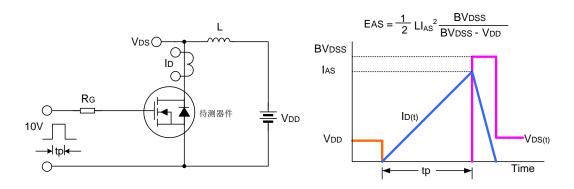
典型特性曲线 (续)

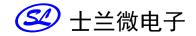


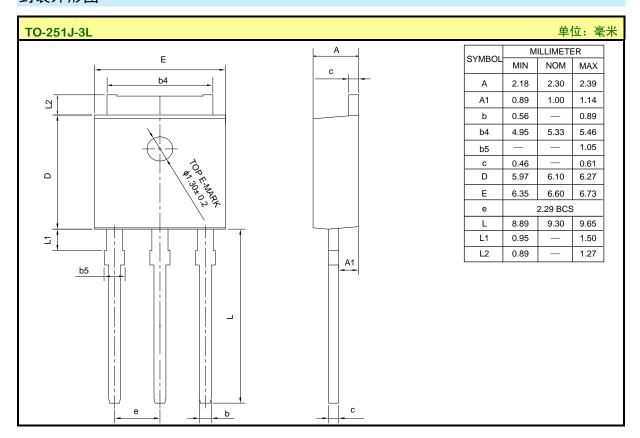
http://www.silan.com.cn



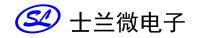
典型测试电路


栅极电荷量测试电路及波形图


开关时间测试电路及波形图


EAS测试电路及波形图

版本号: 1.7 共**7**页 第**5**页



封装外形图

重要注意事项:

- 士兰保留说明书的更改权, 恕不另行通知。客户在下单前应获取我司最新版本资料, 并验证相关信息 是否最新和完整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

SVF4N70MJ说明书

产品名称: SVF4N70MJ 文档类型: 说明书 版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn 版 本: 1.7 修改记录: 1. 删除命名规则 2. 修改声明 版 本: 1.6 修改记录: 3. 更新 TO-251J-3L 封装外形图 版 本: 1.5 修改记录: 1. 修改 R_{DS(on)}, 更新 SOA 曲线图 版 本: 1.4 修改记录: 1. 修改热阻特性 版 本: 1.3 修改记录: 1. 修改产品规格分类 版 本: 1.2 修改记录: 1. 修改 MOS 管符号的示意图 版 本: 1.1 修改记录: 1. 修改"产品规格分类" 版 本: 1.0 修改记录: 1. 原版

杭州士兰微电子股份有限公司

http://www.silan.com.cn