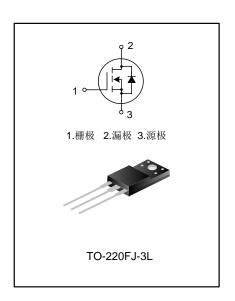
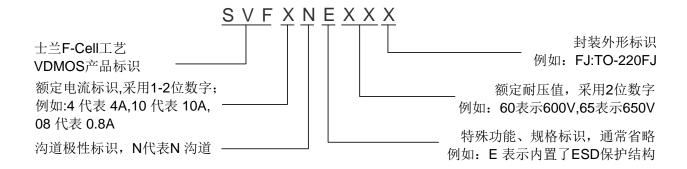


8A、700V N沟道增强型场效应管

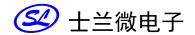

描述

SVF8N70FJ N沟道增强型高压功率 MOS 场效应晶体管采用士兰 微电子的 F-CellTM 平面高压 VDMOS 工艺技术制造。先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。


该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换器,高压 H 桥 PWM 马达驱动。

特点

- ◆ 8A, 700V, R_{DS(on)(典型值)}=0.95Ω@V_{GS}=10V
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力



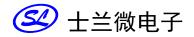
命名规则

产品规格分类

产品名称	封装形式	打印名称	材料	包装
SVF8N70FJ	TO-220FJ-3L	SVF8N70FJ	无卤	料管

极限参数(除非特殊说明, Tc=25°C)

参 数 名	名 称	符号	参数范围	单位
漏源电压		V _{DS}	700	V
栅源电压		V _{GS}	±30	V
泥松山沟	T _C =25°C		8.0	
漏极电流	T _C =100°C	– I _D	5.1	A
漏极冲击电流		I _{DM}	32.0	Α
耗散功率(T _C =25℃)		D	52	W
- 大于 25℃ 每摄氏度减少		P _D	0.42	W/°C
单脉冲雪崩能量(注 1)		E 1) E _{AS} 632		mJ
工作结温范围		TJ	-55~+150	°C
贮存温度范围		T _{stg}	-55~+150	°C

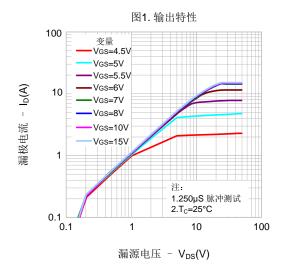

热阻特性

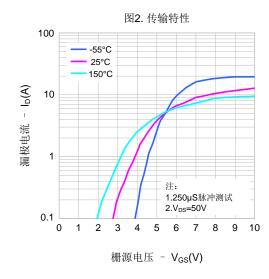
参 数 名 称	符 号	参数范围	单位
芯片对管壳热阻	$R_{ heta JC}$	2.40	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	°C/W

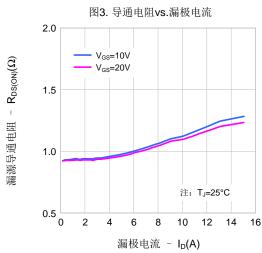
电性参数(除非特殊说明, T_c =25°C)

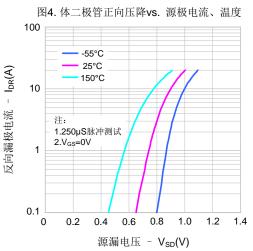
参数名称	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	$V_{GS}=0V$, $I_{D}=250\mu A$	700			V
漏源漏电流	I _{DSS}	V _{DS} =700V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS},\ I_{D}=250\mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =4.0A		0.95	1.2	Ω
输入电容	C _{iss}	V 25V V 0V		1357.00		
输出电容	Coss	V_{DS} =25V, V_{GS} =0V, f =1.0MHz		124.20		pF
反向传输电容	C _{rss}	I = I.UIVINZ		4.40		
开启延迟时间	t _{d(on)}	V 250V I 224 D 250		26.48		
开启上升时间	t _r	$V_{DD}=350V, I_{D}=8.0A, R_{G}=25\Omega$		39.96		
关断延迟时间	t _{d(off)}	(注 2,3)		86.80		ns
关断下降时间	t _f	(在 2,3)		43.36		
栅极电荷量	Q_g	V 500V I 0.0A V 40V		26.11		
栅极-源极电荷量	Q _{gs}	V _{DS} =560V, I _D =8.0A, V _{GS} =10V		7.47		nC
栅极-漏极电荷量	Q_{gd}	(注 2,3)		8.51		

版本号: 1.2 共7页 第2页

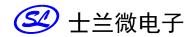

源-漏二极管特性参数


参数名称	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏	1	1	8.0	۸
源极脉冲电流	I _{SM}	P-N 结	-	-	32.0	А
源-漏二极管压降	V_{SD}	I _S =8.0A, V _{GS} =0V			1.4	V
反向恢复时间	Trr	I _S =8.0A, V _{GS} =0V,		515		ns
反向恢复电荷	Q_{rr}	dI _F /dt=100A/µs		4.22		μC

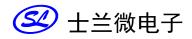

注:


- 1. L=30mH, I_{AS} =5.80A, V_{DD} =100V, R_{G} =25 Ω ,开始温度 TJ=25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs,占空比≤2%;
- 3. 基本不受工作温度的影响。

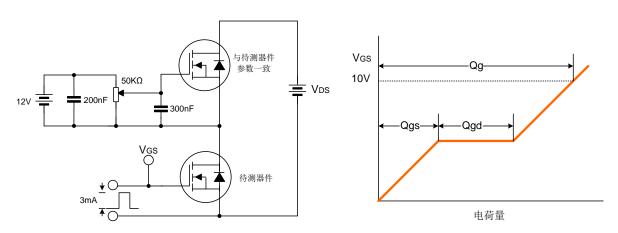
典型特性曲线



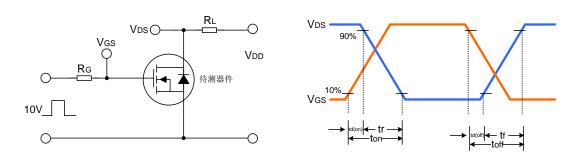



版本号: 1.2 共7页 第3页

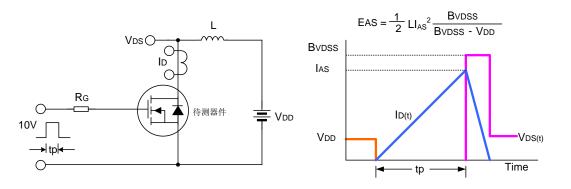
典型特性曲线 (续)

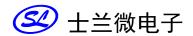


版本号: 1.2 共7页 第4页

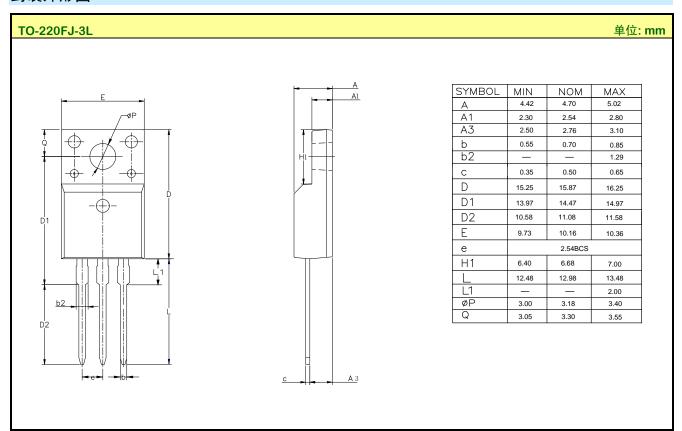


典型测试电路

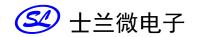

栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图


封装外形图

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

版本号: 1.2

产品名称:	SVF8N70FJ	文档类型:	说明	书	
版 权:	杭州士兰微电子股份有限公司	公司主页:	http:	//www.s	silan.com.cn
版 本:	1.2		作	者:	殷资
修改记录:					
1. 修改	女 TO-220FJ-3L 封装信息				
版 本:	1.1		作	者:	殷资
修改记录:					
1. 修改	女热阻特性				
版 本:	1.0		作	者:	殷资
修改记录:					
1. 正式	犬发布版本				