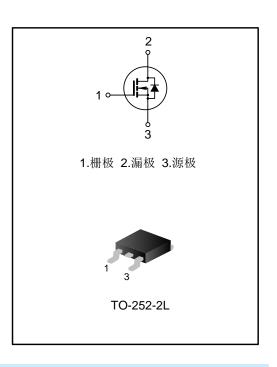
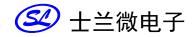


4A、650V N沟道增强型场效应管


描述

SVFP4N65CAD N沟道增强型高压功率 MOS 场效应晶体管采用 士兰微电子的 F-Cell™平面高压 VDMOS 工艺技术制造。先进的工艺 及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的 雪崩击穿耐量。

该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换器,高 压 H 桥 PWM 马达驱动。


特点

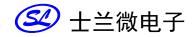
- 4A, 650V, $R_{DS(on)}$ (40 = 2.3 Ω V_{GS} = 10V
- ◆ 低栅极电荷量
- 低反向传输电容
- 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVFP4N65CADTR	TO-252-2L	P4N65CAD	无卤	编带

极限参数(除非特殊说明, $T_A=25$ °C)

参数		符号	参数值	单位	
漏源电压		V _{DS}	650	V	
栅源电压		V_{GS}	±30	V	
漏极电流	T _C =25°C		4.0	А	
· 爾似电流	T _C =100°C	l _D	2.5		
漏极脉冲电流 I _{DM}		I _{DM}	16	Α	
耗散功率(T _C =25°C)		D	77	W	
- 大于 25°C 每摄氏度减少		P _D	0.62	W/°C	
单脉冲雪崩能	单脉冲雪崩能量(注 1) E _{AS} 215		mJ		
工作结温范围			°C		
贮存温度范围		T _{stg}	-55∼+150		


热阻特性

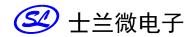
参数	符号	参数值	单位
芯片对管壳热阻	$R_{ heta JC}$	1.62	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.0	°C/W

关键特性参数(除非特殊说明, T_J=25°C)

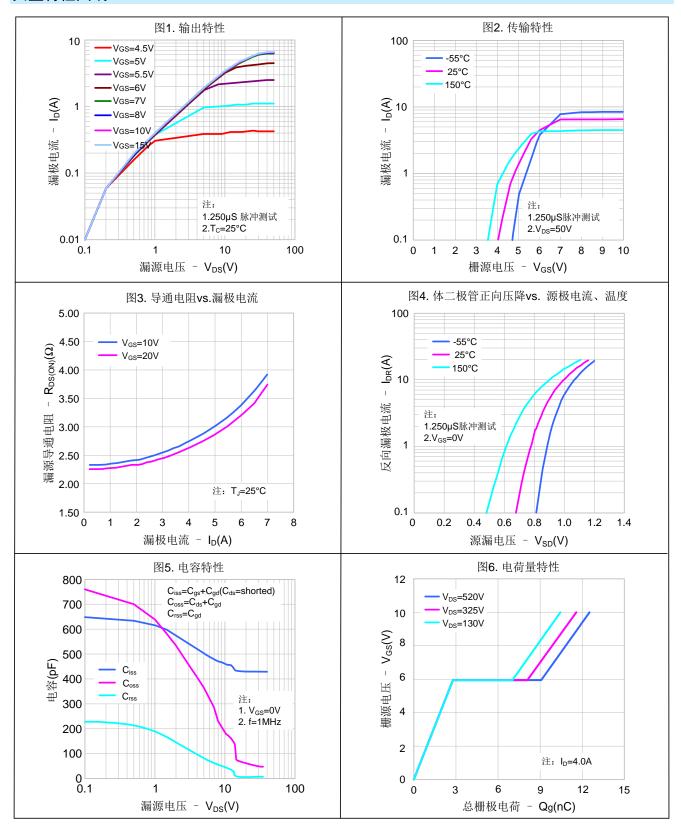
参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	650			V
漏源漏电流	I _{DSS}	V _{DS} =650V, V _{GS} =0V	-		1.0	μA
栅源漏电流	I_{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$	1		±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	$V_{GS}=10V, I_{D}=2.0A$	1	2.3	2.7	Ω
输入电容	C_{iss}	\\ 25\\ \\ 0\\		430		pF
输出电容	Coss	V_{DS} =25V, V_{GS} =0V, f =1.0MHz		55		
反向传输电容	C _{rss}			4.1		
开启延迟时间	t _{d(on)}	V _{DD} =325V,V _{GS} =10V, R _G =25Ω,I _D =4A (注 2,3)		9.9		
开启上升时间	t _r			26		no
关断延迟时间	t _{d(off)}			28		ns
关断下降时间	t _f			26		
栅极电荷量	Qg	V _{DD} =520V, V _{GS} =10V, I _D =4A (注 2, 3)		13		
栅极-源极电荷量	Q_{gs}			2.7		nC
栅极-漏极电荷量	Q_{gd}			6.3		

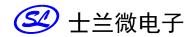
版本号: 1.1 共8页 第2页

源-漏二极管特性参数

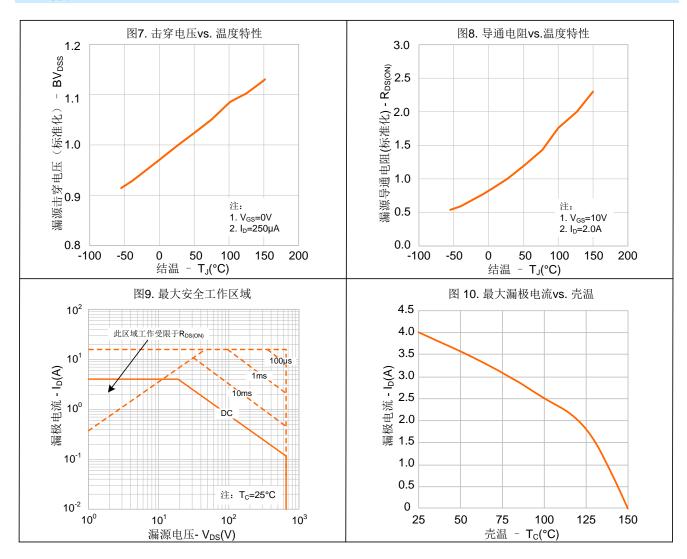

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的			4.0	۸
源极脉冲电流	I _{SM}	反偏 P-N 结			16	А
源-漏二极管压降	V_{SD}	I _S =4.0A, V _{GS} =0V			1.4	V
反向恢复时间	Trr	I _S =4.0A, V _{GS} =0V,		450		ns
反向恢复电荷	Q_{rr}	dl _F /dt=100A/µs (注 2)		1.9		μC

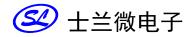
注:

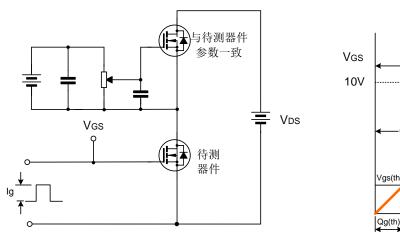

- 1. L=30mH, I_{AS} =3.6A, V_{DD} =100V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试:脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

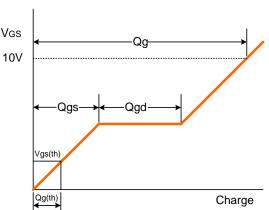

版本号: 1.1

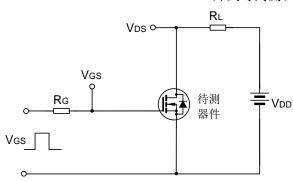
http://www.silan.com.cn

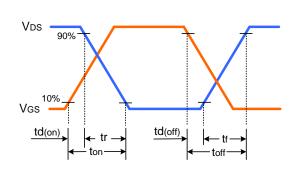


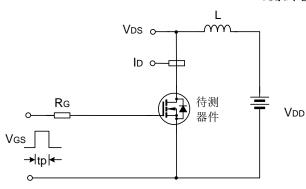

典型特性曲线

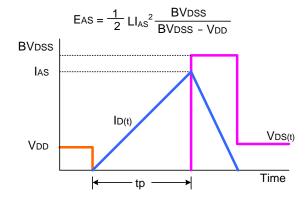

典型特性曲线 (续)

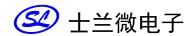


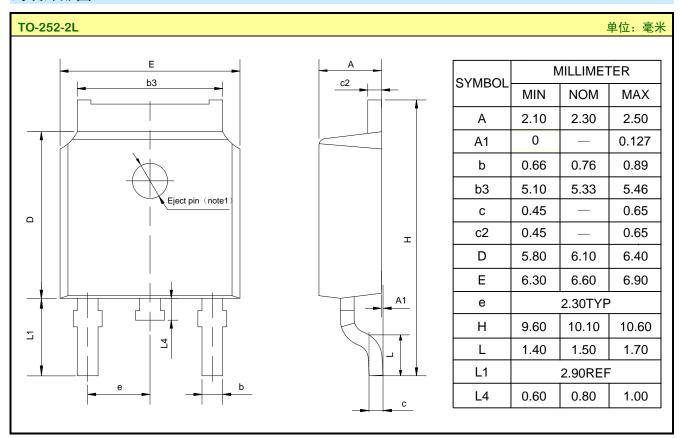

典型测试电路

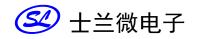

栅极电荷量测试电路及波形图




开关时间测试电路及波形图




EAS测试电路及波形图


封装外形图

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

版本号: 1.1

SVFP4N65CAD 说明书

产品名称: SVFP4N65CAD 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 修改电气图和典型测试电路图

版 本: 1.0

修改记录:

1. 删除命名规则

2. 修改声明

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司

http://www.silan.com.cn