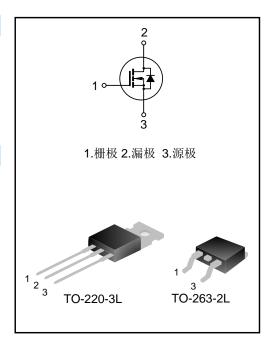


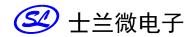

# 120A、90V N沟道增强型场效应管


## 描述

SVG095R0NT(S) N沟道增强型功率MOS场效应晶体管采用士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

### 特点


- 120A, 90V,  $R_{DS(on)}$  ( $_{\oplus 20}$  =4.4m $\Omega$ @ $V_{GS}$ =10V
- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力



### 产品规格分类

| 产品名称       | 封装形式      | 打印名称    | 环保等级 | 包装方式 |
|------------|-----------|---------|------|------|
| SVG095R0NT | TO-220-3L | 095R0NT | 无铅   | 料管   |
| SVG095R0NS | TO-263-2L | 095R0NS | 无卤   | 料管   |

版本号: 1.3 共8页 第1页

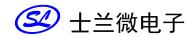


# 极限参数(除非特殊说明, T<sub>A</sub>=25°C)

| 参数                         |                       |      | 符号              | 参数值      | 单位   |
|----------------------------|-----------------------|------|-----------------|----------|------|
| 漏源电压                       |                       |      | $V_{DS}$        | 90       | V    |
| 栅源电压                       | 栅源电压                  |      |                 | ±20      | V    |
|                            | T <sub>C</sub> =25°C  | 芯片电流 | I <sub>D</sub>  | 147      | A    |
| 漏极电流                       |                       | 封装电流 |                 | 120      |      |
|                            | T <sub>C</sub> =100°C | 芯片电流 |                 | 100      |      |
| 漏极脉冲电流    封装电流             |                       |      | I <sub>DM</sub> | 480      | Α    |
| 耗散功率 (T <sub>C</sub> =25℃) |                       |      | $P_D$           | 200      | W    |
| -大于 25℃ 每摄氏度减少             |                       |      | FD              | 1.6      | W/°C |
| 单脉冲雪崩能量 (注 1)              |                       |      | E <sub>AS</sub> | 440      | mJ   |
| 工作结温范围                     |                       |      | T <sub>J</sub>  | -55∼+150 | °C   |
| 贮存温度范围                     |                       |      | $T_{stg}$       | -55∼+150 | °C   |

# 热阻特性

| 参数       | 符号              | 参数值  | 单位   |
|----------|-----------------|------|------|
| 芯片对管壳热阻  | $R_{	heta JC}$  | 0.63 | °C/W |
| 芯片对环境的热阻 | $R_{\theta JA}$ | 62.5 | °C/W |


# 关键特性参数(除非特殊说明, T」=25°C)

| 参数       | 符号                  | 测试条件                                                                       | 最小值 | 典型值  | 最大值  | 单位 |
|----------|---------------------|----------------------------------------------------------------------------|-----|------|------|----|
| 漏源击穿电压   | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V, I <sub>D</sub> =250μA                                 | 90  |      |      | V  |
| 漏源漏电流    | I <sub>DSS</sub>    | V <sub>DS</sub> =90V, V <sub>GS</sub> =0V                                  |     |      | 1.0  | μΑ |
| 栅源漏电流    | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V, V <sub>DS</sub> =0V                                 |     |      | ±100 | nA |
| 栅极开启电压   | $V_{GS(th)}$        | $V_{GS} = V_{DS}$ , $I_D = 250 \mu A$                                      | 2.0 |      | 4.0  | V  |
| 导通电阻     | R <sub>DS(on)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =50A                                  |     | 4.4  | 5.0  | mΩ |
| 栅极电阻     | $R_{G}$             | f=1MHz                                                                     |     | 3.5  |      | Ω  |
| 输入电容     | C <sub>iss</sub>    |                                                                            |     | 5226 |      | pF |
| 输出电容     | Coss                | f=1MHz,V <sub>GS</sub> =0V,V <sub>DS</sub> =40V                            |     | 670  |      |    |
| 反向传输电容   | C <sub>rss</sub>    |                                                                            |     | 24   |      |    |
| 开启延迟时间   | t <sub>d(on)</sub>  | V 40V V 40V D 240                                                          |     | 61   |      |    |
| 开启上升时间   | t <sub>r</sub>      | $V_{DD}=40V, V_{GS}=10V, R_{G}=24\Omega,$                                  |     | 80   |      | 20 |
| 关断延迟时间   | t <sub>d(off)</sub> | I <sub>D</sub> =13.3A                                                      |     | 228  |      | ns |
| 关断下降时间   | t <sub>f</sub>      | (注 2,3)                                                                    |     | 103  |      |    |
| 栅极电荷量    | Qg                  | \/ 40\/ \/ 40\/   504                                                      |     | 85   |      |    |
| 栅极-源极电荷量 | Q <sub>gs</sub>     | V <sub>DD</sub> =40V, V <sub>GS</sub> =10V, I <sub>D</sub> =50A<br>(注 2,3) |     | 30   |      | nC |
| 栅极-漏极电荷量 | $Q_{gd}$            | (在 2,3)                                                                    |     | 21   |      |    |

版本号: 1.3

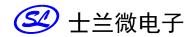
http://www.silan.com.cn



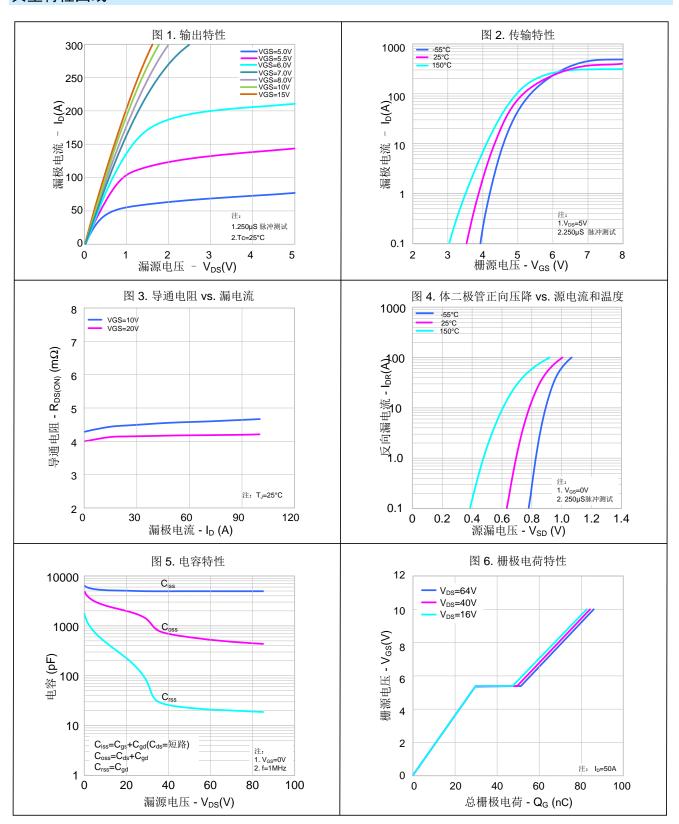


# 源-漏二极管特性参数

| 参数       | 符号              | 测试条件                                     | 最小值 | 典型值  | 最大值 | 单位 |
|----------|-----------------|------------------------------------------|-----|------|-----|----|
| 源极电流     | Is              | MOS 管中源极、漏极构成的反偏                         |     |      | 120 | ۸  |
| 源极脉冲电流   | I <sub>SM</sub> | P-N 结                                    |     |      | 480 | А  |
| 源-漏二极管压降 | $V_{SD}$        | I <sub>S</sub> =50A,V <sub>GS</sub> =0V  |     |      | 1.4 | V  |
| 反向恢复时间   | Trr             | I <sub>S</sub> =20A,V <sub>GS</sub> =0V, |     | 66   |     | ns |
| 反向恢复电荷   | $Q_{rr}$        | dIF/dt=100A/µs (注 2)                     |     | 0.14 |     | μC |

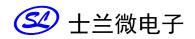

#### 注:

- 1. L=0.5mH, $I_{AS}$ =42A, $V_{DD}$ =72V, $R_{G}$ =25 $\Omega$ ,开始温度 $T_{J}$ =25 $^{\circ}$ C;
- 2. 脉冲测试:脉冲宽度≤300µs,占空比≤2%;
- 基本上不受工作温度的影响。

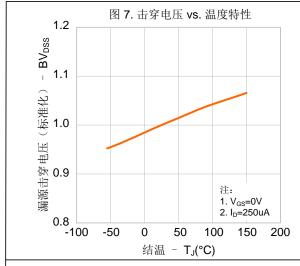

杭州士兰微电子股份有限公司

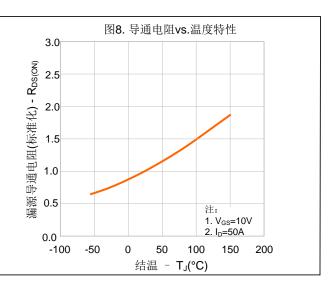
http://www.silan.com.cn

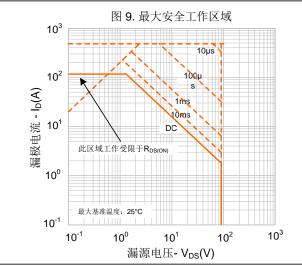
版本号: 1.3



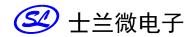

## 典型特性曲线





版本号: 1.3

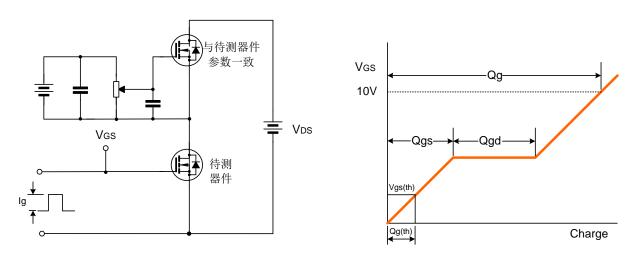

http://www.silan.com.cn



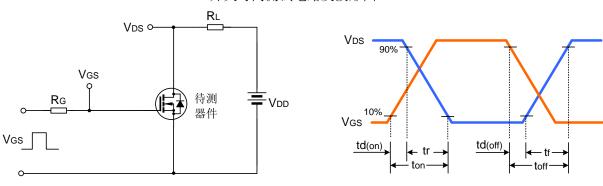

# 典型特性曲线(续)



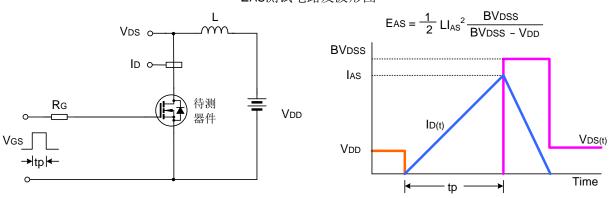




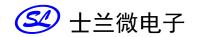

版本号: 1.3 共8页 第5页




## 典型测试电路

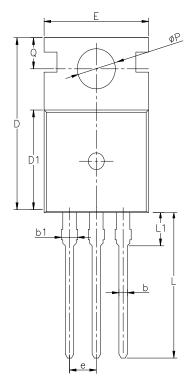

### 栅极电荷量测试电路及波形图

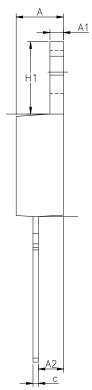



开关时间测试电路及波形图



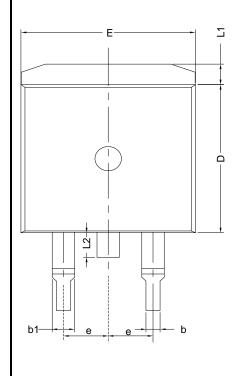
### EAS测试电路及波形图

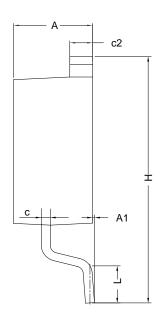




版本号: 1.3



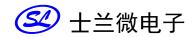
# 封装外形图






|        | MILLIMETER |         |       |  |  |
|--------|------------|---------|-------|--|--|
| SYMBOL | MIN        | NOM     | MAX   |  |  |
| Α      | 4.30       | 4.50    | 4.70  |  |  |
| A1     | 1.00       | 1.30    | 1.50  |  |  |
| A2     | 1.80       | 2.40    | 2.80  |  |  |
| b      | 0.60       | 0.80    | 1.00  |  |  |
| b1     | 1.00       | _       | 1.60  |  |  |
| С      | 0.30       | _       | 0.70  |  |  |
| D      | 15.10      | 15.70   | 16.10 |  |  |
| D1     | 8.10       | 9.20    | 10.00 |  |  |
| Е      | 9.60       | 9.90    | 10.40 |  |  |
| е      |            | 2.54BSC |       |  |  |
| H1     | 6.10       | 6.50    | 7.00  |  |  |
| L      | 12.60      | 13.08   | 13.60 |  |  |
| L1     | _          |         | 3.95  |  |  |
| ΦР     | 3.40       | 3.70    | 3.90  |  |  |
| Q      | 2.60       |         | 3.20  |  |  |


TO-263-2L 单位: 毫米





| N/A/DOI | MILLIMETER |      |       |  |  |
|---------|------------|------|-------|--|--|
| SYMBOL  | MIN        | NOM  | MAX   |  |  |
| Α       | 4.30       | 4.57 | 4.72  |  |  |
| A1      | 0          | 0.10 | 0.25  |  |  |
| b       | 0.71       | 0.81 | 0.91  |  |  |
| С       | 0.30       | _    | 0.60  |  |  |
| c2      | 1.17       | 1.27 | 1.37  |  |  |
| D       | 8.50       |      | 9.35  |  |  |
| Ε       | 9.80       |      | 10.45 |  |  |
| е       | 2.54BSC    |      |       |  |  |
| Н       | 14.70      |      | 15.75 |  |  |
| L       | 2.00       | 2.30 | 2.74  |  |  |
| L1      | 1.12       | 1.27 | 1.42  |  |  |
| L2      | _          |      | 1.75  |  |  |

http://www.silan.com.cn



#### 重要注意事项:

- 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有 一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

| 产品 | 名称: | SVG095R0NT(S) | 文档类型: | 说明书                     |
|----|-----|---------------|-------|-------------------------|
| 版  | 权:  | 杭州士兰微电子股份有限公司 | 公司主页: | http://www.silan.com.cn |

版 本: 1.3

修改记录:

1. 更新 TRR 和 QRR

版 本: 1.2

修改记录:

1. 模板更新(更新按比例调整的立体图,更新标准化后的封装外形图,更新曲线模板,更新重要注意事项)

本: 版 1.1

修改记录:

1. 增加 TO-263-2L 封装

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司